On a graph packing conjecture by Bollobás, Eldridge and Catlin

نویسندگان

  • Hemanshu Kaul
  • Alexandr V. Kostochka
  • Gexin Yu
چکیده

Two graphs G1 and G2 of order n pack if there exist injective mappings of their vertex sets into [n], such that the images of the edge sets are disjoint. In 1978, Bollobás and Eldridge, and independently Catlin, conjectured that if (∆(G1)+1)(∆(G2)+1)≤ n+1, then G1 and G2 pack. Towards this conjecture, we show that for ∆(G1),∆(G2)≥ 300, if (∆(G1)+1)(∆(G2)+1)≤0.6n+1, then G1 and G2 pack. This is also an improvement, for large maximum degrees, over the classical result by Sauer and Spencer that G1 and G2 pack if ∆(G1)∆(G2)<0.5n.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Packing d-degenerate graphs

We study packings of graphs with given maximal degree. We shall prove that the (hitherto unproved) Bollobás–Eldridge–Catlin conjecture holds in a considerably stronger form if one of the graphs is d-degenerate for d not too large: if d,∆1,∆2 ≥ 1 and n > max{40∆1 ln ∆2, 40d∆2} then a d-degenerate graph of maximal degree ∆1 and a graph of order n and maximal degree ∆2 pack. We use this result to ...

متن کامل

Proof of a Conjecture of Bollobás and Eldridge for Graphs of Maximum Degree Three

Let G1 and G2 be graphs on n vertices. If there are edge-disjoint copies of G1 and G2 in Kn, then we say there is a packing of G1 and G2. A conjecture of Bollob as and Eldridge [5] asserts that, if ( (G1) + 1)( (G2) + 1) n+ 1 then there is a packing of G1 and G2. We prove this conjecture when (G1) = 3, for su ciently large n.

متن کامل

Ore-type conditions implying 2-factors consisting of short cycles

For every graph G, let σ2(G) = min{d(x)+ d(y) : xy 6∈ E(G)}. The main result of the paper says that everyn-vertex graphGwithσ2(G) ≥ 4n 3 −1 contains each spanning subgraphH all whose components are isomorphic to graphs in {K1, K2, C3, K 4 , C + 5 }. This generalizes the earlier results of Justesen, Enomoto, andWang, and is a step towards an Ore-type analogue of the Bollobás–Eldridge–Catlin Conj...

متن کامل

Extremal Theorems for Degree Sequence Packing and the 2-Color Discrete Tomography Problem

A sequence π = (d1, . . . , dn) is graphic if there is a simple graph G with vertex set {v1, . . . , vn} such that the degree of vi is di. We say that graphic sequences π1 = (d (1) 1 , . . . , d (1) n ) and π2 = (d (2) 1 , . . . , d (2) n ) pack if there exist edge-disjoint n-vertex graphs G1 and G2 such that for j ∈ {1, 2}, dGj (vi) = d (j) i for all i ∈ {1, . . . , n}. Here, we prove several ...

متن کامل

Embedding Arbitrary Graphs of Maximum Degree Two

Let S(H) be the minimum degree of the graph H. We prove that a graph H of order n with S(H) ^ (2n —1)/3 contains any graph G of order at most n and maximum degree A(G) < 2 as a subgraph, and this bound is best possible. Furthermore, this result settles the case A(G) = 2 of the well-known conjecture of Bollobas, Catlin and Eldridge on packing two graphs with given maximum degree.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 28  شماره 

صفحات  -

تاریخ انتشار 2008